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Abstract: Cyber-physical systems like buildings and power plants are monitored with ever-increasing
numbers of sensors, gathering massive and heterogeneous time-series datasets collected in data lakes.
Appropriate meta-data, describing both the function and location of each sensor, is essential for
any profitable use of the data but is often not available or incomplete. While various approaches
exist for meta-data extraction from relational databases, the unique characteristics of heterogeneous
time-series data necessitate specialized algorithms. Among the general algorithms developed for
time-series meta-data inference, only a few are concerned with relationship discovery despite the
critical importance of this information in many meta-data formats.
In contrast to time series integration, other fields of research offer a variety of measures for relationship
discovery in homogeneous time-series collections. In this paper, we aim to leverage this knowledge for
heterogeneous time-series data integration. We consolidate over 40 different measures and evaluate
their performance on seven datasets from different industrial facilities to extract promising relationship
measures and show that there are other better-performing candidates than the common Pearson
Correlation Coefficient.
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1 Introduction

With the rise of the internet of things (IoT) and data-driven analysis of complex systems,
there is an ever-increasing amount of time-series data [Ke23]. Experts can use this data
to optimize buildings or industrial complexes like power plants [So20, WL23]. While
these developments are of utter importance for cost, energy, and environmental efficiency,
missing meta-data is named as a challenge across all approaches by the industry [WL23],
researchers [BM24], and government agencies [So20]. Since manually adding semantic
information is time-consuming and cost-intensive, automatic approaches are becoming
increasingly important. While some algorithms analyze existing meta-data [WSS21, Al23],
the information of the given labels is often incomplete. As a consequence, data-driven
approaches, inferring information from the raw time series, have received growing attention.

The semantic information about sensors and their corresponding time series data
can be encoded into different meta-data schemas that reach from proprietary naming
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Fig. 1: Visualization of the usage of relationship measures. Centered is the available toolbox of different
relationship measures from which we evaluate different measures for time series data integration.
Left and right are the possible applications for a selected relationship measure (icons partially from
flaticon.com).

conventions like the Kraftwerk-Kennzeichnungs-System (KKS) [VG18] to ontology
representations using semantic web technologies [Ba18]. Regardless of the schema, the
label always contains two different categories of information. On the one hand, there
is information about the type of measurements or sensor, e.g., temperature, revolutions,
pressure, system state. On the other hand, there is information about the association of
sensors to different subsystems, e.g., all sensors in the kitchen or all measurements in the
water-cooling cycle of a gas turbine.
Identifying the sensor type can be approached with many tools from pattern recognition
and is treated widely in the related work [BM24]. In contrast, the inference of associations
has received less attention in the context of building data integration, and fewer approaches
have been published. Determining the absolute association of an individual sensor for
previously unseen data by analyzing its time series in isolation is, in most cases, nearly
impossible. To address this challenge, sensors are typically contextualized by grouping their
time series based on a relationship measure [WL23]. If one sensor within the group can
be identified as originating from a specific room or functional part of a power plant, that
association can then be extended to the entire group.
The data-management community offers several ideas for relational data profiling and
relationship discovery [AGN15, Ha23], but the approaches mainly consider relational data.
This contrasts with the prevalence of time series in many data collection systems and leaves
room for further developments. In contrast, relationship discovery for time series is very
prominent in the fields of dynamical-systems analysis from physics, medicine, causal dis-
covery, network/graph inference, and signal processing [BGBW19, Ru19, Cl23, MMB23].
With this paper, we want to analyze how these approaches transfer from their original
purpose to the problem of heterogeneous time-series data integration.

At this point, an example scenario might help illustrate our motivation. Unlike stan-
dardized products like cars, power plants are highly unique in their configuration, design,
and use case. Moreover, these plants often operate for decades, undergoing extensions



and partial upgrades to meet evolving requirements. While plant operators focus on daily
operations and economic management, they frequently rely on external experts to validate
functionality, ensure regulatory compliance, and optimize performance. These experts, in
turn, depend on time-series data to feed their analysis tools and models.
Consider an expert tasked with optimizing the efficiency of a combined-cycle power plant.
Such plants generate electricity using gas and steam turbines, with each block typically
comprising three turbines – two gas turbines and one steam turbine powered by waste heat
from the gas turbines. The expert identifies reduced efficiency during full load and suspects
an issue in the steam-generation pipeline, specifically within the Heat Recovery Steam
Generator (HRSG) of block one. Following an HRSG upgrade, however, only the most
essential control signals are properly labelled and integrated. Unfortunately, the time-series
data needed for a detailed analysis remains unlabelled.
Locating these signals is challenging, given the plant’s multiple blocks, numerous turbines,
HRSG systems, and the variety of sensors (e.g., pressure, temperature, flow) within each
HRSG. The expert must manually sift through the data, relying on domain knowledge
and repeated pairwise comparisons with visual inspections – an effort-intensive process
that consumes valuable time and resources. A toolbox equipped with robust relationship
measures could significantly streamline this task (see Fig. 1 for a visualization). By selecting
a labelled signal from the HRSG of interest, the toolbox could automatically retrieve signals
of interest by estimating relatedness to the original query using different relationship
measures. As the search for signals is only an intermediary step, the relationship measures
must be simple and robust [WL23].

This paper aims to collect and transfer time-series relationship measures from their
original application areas to the domain of heterogeneous time-series integration for
building and industrial data. Relationship discovery in this field has received relatively
little attention despite its significance in existing metadata schemas. Unlike traditional
applications of these measures – typically used on time series from similar sensors – we
focus on heterogeneous time-series collections. These collections consist of data gathered
from diverse sensor setups with varying units of measurement.
Most of the methods we aim to evaluate, were not originally designed to address the
challenges of heterogeneous, extensive, and noisy time-series data from buildings and
industrial facilities. However, in a landscape where linear correlation is often used as a
baseline for relationship discovery, we are particularly interested in whether methods from
other fields can perform as well or better. Using a large collection of different measures, we
provide insights into their performance across datasets from different industrial facilities
and aim to identify the most promising measures for time-series data integration.



2 Related Work

2.1 Data Profiling for Meta-Data Extraction

The data-management community has been developing data-driven or query-driven ap-
proaches for data profiling and meta-data extraction for some time now [AGN15, Pa15,
HL20, Hu19, La21, Ha23]. Almost all of these approaches are focused on inferring semantic
information for relational data. While there are multi-column approaches for relationship
discovery, such as frequent patterns [Pa15], approaches for heterogeneous time series are
underrepresented in this area. This contrasts with the prevalence of time-series data in
cyber-physical systems. We are motivated to close this gap by focusing our research on
approaches suitable for extracting relationships in heterogeneous time-series collections.

2.2 Relationship Inference for Time-Series Integration

Several works regarding building data integration discuss the immediate necessity of
automated approaches. Especially for Heating, Ventilation and Air Conditioning (HVAC),
data integration and meta-data inference is a time-consuming but necessary step to improve
the energy efficiency of large buildings [So20]. As buildings’ heating and ventilation
systems comprise different technical systems, most of the collected data has proprietary
labels and no standard labeling format [Ch20]. This motivates many different approaches
for time-series integration, where some focus on translating available meta-data, some on
identifying sensor types, and others on inferring relationships between raw time series
[BM24]. The sought-after relationships can be different in nature. They can be causal, like
input-output-relations, but also correlations, e.g., the temperature and carbon dioxide, as
well as the movement-sensor change when a person enters a room in a building; in parallel,
the pressure shortly increases as the person closes the door. Therefore, we are not restricted
to only causal relationships but aim to find all sensors that are attributed to functional
groups. Our setting also differs from approaches from multivariate time-series analysis,
where the time series are typically connected to the same system. In contrast, in our setting,
that is not necessarily the case. Furthermore, the dimensionality in our case is extensive,
often reaching hundreds of time series.

Correlation Analysis. Several papers rely on common correlation coefficients be-
tween time series to infer relationships and their association with functional subsystems.
Koc et al. [KAB14], Park [PLA18], and Yu et al. [Yu22] rely primarily on the Pearson
Correlation Coefficient (PCC) and Spearman Rank Correlation to infer relations between
the sensors. They also allow time delays when measuring the associations by generalizing
the PCC into the Cross-Correlation function. While the PCC has been the de-facto gold
standard to measure relationships between time series in the field of meta-data extraction
[Cl23, BM24], this standard has never been questioned. Therefore, we also want to
incorporate other measures for a better comparison.



Regression Analysis. Instead of measuring relationships directly, regression-analysis
methods model the relationship between two time series and asses the relationship strength
using the fidelity of the trained model. The underlying assumption is that for two related
time series, the values of one time series contain enough information to predict the values
of another time series. As a consequence, trained models show a low error for pairs of
related time series.
Hong et al. [HGW17] develop an elegant way to train first-order autoregressive models
using linear algebra to parallelize and speed up computations. Chen et al. [Ch20] combine
several regression models to infer relations between sensors. While the idea is intuitive
and common in statistics (e.g., Granger Causality), regression analysis also has significant
disadvantages. Inferring relations via modeling requires models for every possible pair of
signals, which are, therefore, quadratic with the number of signals. This limits the choice of
regression models for a feasible analysis. Additionally, the selection of models is non-trivial,
as the relations between the sensors are not necessarily linear.
Event Analysis. Buildings and industrial facilities most likely change their operational
status several times within short periods (days). This is also true for their underlying
functional systems. Most buildings and their respective rooms (functional groups) will
be occupied at different times throughout the day. Industrial facilities like power plants
contain several subsystems that are active and inactive at different times during the day.
These operational state changes are most likely visible in their corresponding measurements.
When they occur at different points in time, one can infer relationships by finding sensors
with simultaneous events.
Fontugne et al. [Fo12] and Hong et al. [Ho13] implement this idea by decomposing a time
series into different frequency components via the Empirical Mode Decomposition (EMD).
Arguing that the higher frequency components correspond to events and suppress diurnal
cycles, they use the correlation of medium and higher frequency Intrinsic Mode Func-
tions (IMFs) to infer relationships. Later, Hong et al. [Ho19] developed an algorithm that
detects events using a Markovian event model. Stinner et al. [St19] use temporal frequent
patterns by separating the time series into their transitional states and then counting the
associations between them during these transitional states. Gonzalez and Amft [GA15]
identify events via numerical derivation. In a previous paper, we used Change Point
Detection (CPD) to locate and correlate changes with a similar idea in mind [WL23]. While
we recognize the potential in these ideas, we still want to test other measures from various
research fields to offer a different perspective on the problem of relationship inference and
possibly identify other promising candidates.
Pritoni et al. [Pr15] and Koh et al. [Ko16] take a similar but active approach. Instead
of relying on operational status changes, they actively introduce perturbations into the
measurements and then search for all sensors that changed. While this is valid and guarantees
separable changes per functional group, having active control in a system is uncommon in
the context of time-series integration. Access to the system is either not feasible, e.g., for
industrial facilities in production, or not possible for historic data.
Supervised Machine Learning. Naturally, the problem of relationship inference can be
transformed into a supervised classification problem that uses a labeled dataset of related



time series to train machine-learning models. The literature on relationship classification
approaches the problem from two different perspectives. On the one hand, Li et al. [LHW20]
and Wu et al. [WYW23] train siamese neural networks to learn an embedding of time series
into a metric space, where distance is proportional to the relationship. On the other hand,
Stinner et al. [St22] and Wan et al. [Wa23] train models to directly classify whether two
time series are related by modeling the inference as a binary classification problem. All
approaches differ in their deployed architecture to embed the time series.
The biggest challenges for supervised machine learning for time-series integration are
the poor availability of training datasets and the high heterogeneity of the time series,
hampering the transferability of trained models [St22]. In other words, it is challenging to
obtain labeled data, and due to the heterogeneity of time series and industrial facilities,
transferring models is challenging.

3 Methods

This paper analyzes different measures for finding related time series in large collections of
heterogeneous time series in the context of time-series integration and meta-data extraction
for data sets from buildings and industrial facilities. This is facilitated by the seminal
work of Cliff et al. [Cl23] and their corresponding Python package, PySPI. The package
compiles over 200 statistics of pairwise interactions (SPIs) from interdisciplinary literature
and provides them in a unifying view. While their paper unifies different relationship
measures and groups them into similar behavior, we build upon their collection to analyze
the performance of different measures for finding related but heterogeneous time series
originating from buildings and industrial facilities.
This analysis is motivated by the lack of common baselines in the related work and the
common choice of PCC in practical applications. This contrasts with a multitude of other
measures available in the literature.

3.1 Relationship Measures

There are six overarching categories of relationship measures defined in the original paper
[Cl23]. Table 1 is an overview of all the measures used in our study. In addition to the
theoretical measures, each measure can be computed with different estimators from discrete
time series. This increases the number of measures from the ones listed in table 1. The
problem of inferring relations is inherently quadratic in the number of signals, and the
computational demand varies significantly for the different relationship measures. As a
consequence of initial test runs, we limited our measurements to the ’fast’ subset defined in
the original paper [Cl23]. For details about the relationship measures, we refer the interested
reader to the appendix of Cliff et al. [Cl23].
Some of the employed relationship measures are dissimilarities and others are similarities.
Not all measures are mathematical norms [Ba22]. In our context, a high similarity indicates



that two time series are related, while a high dissimilarity indicates that two time series are
unrelated. To resolve this counterdirection, we individually assigned each measure to the
category of similarity or dissimilarity. To be able to compute all metrics for dissimilarities
and similarities in the same way, we invert the dissimilarities using the exponential heuristic
in combination with column-wise min-max-normalization [MGdL22]:

Similarity = exp
{
− Dissimilarity − min (Dissimilarity)

max (Dissimilarity) − min (Dissimilarity)

}
(1)

3.2 Combination of Measures

Intuitively, there can not be a singular measure performing exceptionally well for all datasets,
as the relationships between time series take different forms. Based on this intuition, the next
logical step is to combine multiple measures to account for a wider range of relationships.
This can be done using supervised learning, but we want to keep it to unsupervised
combinations for similar reasons as discussed in section 2.2. We test and employ four
different linear approaches to combine multiple measures. Before combining the measures,
we employ column-wise z-score normalization of each similarity matrix to account for
different ranges of each relationship measure.
The straightforward linear combination is the sum relationship measures, which is directly
proportional to computing the mean of all measures. To obtain a weighted linear combination,
we flatten the similarity matrices and calculate the Principle Component Analysis (PCA),
keeping only the major principle component for a weighted linear combination of all
measures. We then also compute the median of all measures. Additionally, we employ a
popular method to combine similarity networks based on genomic data called Similarity
Network Fusion (SNF) [Wa14].

3.3 Evaluation Metrics

To compare the different relationship measures, we require scalar metrics that capture the
performance of each measure across multiple datasets. There is no agreement on a single
evaluation metric in the related work. As a consequence, we chose multiple metrics that
capture different aspects. Firstly, we adopt the perspective of Information Retrieval (IR),
where algorithms are assessed on their ability to retrieve the top 𝑘 most relevant results
for a given query (fig. 1 left side). Secondly, we interpret the time-series collection as a
graph, with each vertex representing a time series and edges representing the relationships
between sensors. We evaluate this graph by clustering the nodes (fig. 1 right side). In total,
we employ seven different evaluation metrics to assess the performance of the relationship
measures discussed in this paper.



Tab. 1: List of relationship measures used in this study. Similarity and distance are abbreviated with
Sim. and Dist., respectively. Overall, there are 42 measures and 216 estimators.

Category Methods Specifier Estimators Sim. Dist.
Covariance cov 11 ✓
Precision prec 10 ✓

Basic Statistics Cross Correlation xcorr 6 ✓
Kendall’s Rank Correlation Coefficient kendalltau 2 ✓

Spearman’s Rank Correlation Coefficient spearmanr 2 ✓

Barycenter bary 4 ✓

Distance Correlation dcorr 2 ✓

Distance Similarity Hilbert-Schmidt Independence Criterion hsic 2 ✓

Gromov-Wasserstein Distance gwtau 1 ✓

Pairwise Distance pdist 6 ✓

Additive Noise Model anm 1 ✓
Causal Inference Conditional Distribution Similarity Fit cds 1 ✓

Information-Geometric Causal Inference igci 1 ✓

Regression-Error Based Causal Inference reci 1 ✓

Granger Causality gc 1 ✓

Mutual Information mi 4 ✓

Time-lagged Mutual Information tlmi 4 ✓

Information Theory Stochastic Interaction si 3 ✓

Transfer Entropy te 1 ✓
Cross-Map Entropy xme 6 ✓
Conditional Entropy ce 2 ✓
Joint Entropy je 3 ✓

Coherence Magnitude cohmag 6 ✓

Directed Coherence dcoh 6 ✓

Debiased squared phase lag index dspli 6 ✓

Debiased sq. weighted phase lag index dswpli 6 ✓

Directed transfer function dtf 6 ✓

Direct directed transfer function ddtf 6 ✓

Imaginary Coherence icoh 6 ✓

Partial Directed Coherence pdcoh 6 ✓

Spectral Generalised partial directed coherence gpdcoh 6 ✓

Coherence Phase phase 6 ✓

Group Delay gd 3 ✓

Pairwise Phase Consistency ppc 6 ✓

Phase Lag Index pli 6 ✓

Weighted phase lag index wpli 6 ✓

Phase Locking Value plv 6 ✓

Phase Slope Index psi 9 ✓

Spectral Granger Causality sgc 24 ✓

Cointegration coint 11 ✓

Misc. Power Envelope Correlation pec 6 ✓

Linear Model Fit lmfit 5 ✓



3.3.1 Information Retrieval

Information Retrieval is the process of obtaining relevant information from a large repository
based on user queries or search criteria [MC18]. In our context, we want to retrieve all
related time series for a query time series representing a particular functional group. We
employ three of the most commonly used metrics from the field of IR to evaluate the
retrieval performance. Formulas and notation in this paragraph are taken from Mitra et al.
[MC18]. See table 2 for a description of all symbols.

Tab. 2: Notation for IR metrics.

Symbol Meaning
Query 𝑞 The 𝑞 denotes a single query, i.e., finding all related time series to a

query time series.
Set of Queries 𝑄 Multiple queries build a query set 𝑄.

Document 𝑑 Each query 𝑞 retrieved multiple documents 𝑑 which correspond to
time series in the scope of this paper.

Set of Documents 𝐷 The collection of documents 𝑑 to retrieve is noted as 𝐷.

Tuple in Result ⟨𝑖, 𝑑⟩𝑞 Retrieved Document 𝑑 at rank 𝑖.
Set of Ranked Results 𝑅𝑞 The ranked set of time series returned by query 𝑞. The lowest rank

has the strongest relation to the query.
Relevance 𝑟𝑒𝑙𝑞 (𝑑) The relevance of a document 𝑑 for query 𝑞. In our case, the relevance

is binary. Where one stands for a related time series.

Mean Reciprocal Rank (MRR). The MRR is calculated as the average of the reciprocal
ranks of the first relevant result for a set of queries. The MRR is one for a perfect retrieval
and decreases with the quality of the retrieval. The Reciprocal Rank (RR) for a single query
can be computed as follows:

𝑅𝑅𝑞 = max
⟨𝑖,𝑑⟩𝑞 ∈𝑅𝑞

𝑟𝑒𝑙𝑞 (𝑑)
𝑖

(2)

Mean Average Precision (MAP). MAP is calculated as the mean of the average precision
scores for a set of queries, where average precision is the average of precision values at
relevant result positions. The average precision for a single query can be computed as
follows:

𝐴𝑃𝑞 =

∑
⟨𝑖,𝑑⟩𝑞 ∈𝑅𝑞

Prec𝑞,𝑖 ∗ 𝑟𝑒𝑙𝑞∑
𝑑∈𝐷 𝑟𝑒𝑙𝑞 (𝑑)

with Prec𝑞,𝑖 =

∑⟨𝑖,𝑑⟩𝑞
⟨1,𝑑⟩𝑞

𝑟𝑒𝑙𝑞 (𝑑)

|𝑅𝑞 |
(3)

Normalized Discounted Cumulative Gain (NDCG). NDCG measures the usefulness of a
ranked list of results by considering the position and relevance of each result. The initial
gain of a query is noted as Discounted Cumulative Gain (DCG) and is normalized by the



gain of a perfect retrieval, noted as ideal Discounted Cumulative Gain (IDCG), to facilitate
comparison across different queries. The NDCG of a query can be computed as follows:

𝑁𝐷𝐶𝐺𝑞 =
𝐷𝐶𝐺𝑞

𝐼𝐷𝐶𝐺𝑞

with 𝐷𝐶𝐺𝑞 =
∑︁

⟨𝑖,𝑑⟩𝑞 ∈𝑅𝑞

𝑟𝑒𝑙𝑞 (𝑑)
log2 (𝑖)

, 𝐼𝐷𝐶𝐺𝑞 =

|𝑅𝑞 |∑︁
𝑖=1

1
log2 (𝑖)

(4)

In addition, we include Triplet Accuracy (TA) as it is used for evaluation in the related
work [WYW23]. TA measures the proportion of correctly ordered triplets out of the total
number of assessed triplets for similarity learning. Triplets always consist of three time
series: one time series is the anchor, and the other two are a negative (unrelated time series)
and a positive example (related time series). A triplet is correct if the positive example has a
higher similarity than the negative example. TA is computed using all possible triplets.

3.3.2 Clustering Performance

In addition to the retrieval quality, we also evaluate the inferred time-series graph. Unfor-
tunately, determining the real and continuous relationship weights is challenging for all
applications and datasets. Therefore, we rely on binary, undirected edges for the ground-truth
relations between time series. Time series from the same functional group are viewed as one
connected cluster. We use spectral clustering on the inferred relationships to extract clusters
from the similarity matrix. We chose this algorithm because of the number of functional
groups (clusters). Clusters are not necessarily uniform nor circular, and due to the use of
non-euclidean measures. We selected three common clustering metrics for the evaluation
[HA85, Ro16]. All measures are defined using the symbols from the following contingency
table 3, where the numbers 𝑛𝑖 𝑗 in each cell are the number of time series assigned to cluster
𝑖 for clustering result 𝑉 and assigned to cluster 𝑗 in clustering result 𝑈, 𝑣𝑖 and 𝑢 𝑗 are the
sizes of the cluster 𝑉𝑖 and 𝑈 𝑗 for each clustering result respectively.

Tab. 3: Contingency table with notations for clustering.

𝑉
⧹𝑈 𝑈1 𝑈2 · · · 𝑈𝑠 𝑣𝑖 =

∑𝑠
𝑗=1 𝑛𝑖 𝑗

𝑉1 𝑛11 𝑛12 · · · 𝑛1𝑠 𝑣1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

𝑉𝑟 𝑛𝑟1 𝑛𝑟2 · · · 𝑛𝑟𝑠 𝑣𝑟

𝑢 𝑗 =
∑𝑟

𝑖=1 𝑛𝑖 𝑗 𝑢1 𝑢2 · · · 𝑢𝑠 𝑛 =
∑𝑟

𝑖=1
∑𝑠

𝑗=1 𝑛𝑖 𝑗

Adjusted Rand Index (ARI). The ARI evaluates the similarity of two clustering results by
comparing similarly clustered pairs of points to all pairs of points. The adjustment accounts
for the chance of randomly pairing points correctly. Correctly paired points are the ones



that are in the same cluster for both results or in different clusters for both results. The ARI
is defined as follows:

ARI =

∑𝑟
𝑖=1

∑𝑠
𝑗=1

(𝑛𝑖 𝑗
2
)
−
[∑𝑟

𝑗=1
(𝑢 𝑗

2
) ∑𝑠

𝑖=1
(𝑣𝑖

2
) ]
/
(𝑛
2
)

0.5
[∑𝑟

𝑗=1
(𝑢 𝑗

2
)
+∑𝑠

𝑖=1
(𝑣𝑖

2
) ]

−
[∑𝑟

𝑗=1
(𝑢 𝑗

2
) ∑𝑠

𝑗=𝑖

(𝑣𝑖
2
) ]
/
(𝑛
2
) (5)

Adjusted Mutual Information (AMI). The AMI evaluates the similarity of two clustering
results by comparing the amount of shared information between the clusterings while ac-
counting for the possibility of chance agreements. It is computed using different information
theoretic entropies:

AMI(𝑈,𝑉) = MI(𝑈,𝑉) − E[MI(𝑈,𝑉)]
max(𝐻 (𝑈), 𝐻 (𝑉)) − E[MI(𝑈,𝑉)] (6)

with MI(𝑈,𝑉) =
𝑟∑︁
𝑖=1

𝑠∑︁
𝑗=1

𝑛𝑖 𝑗

𝑛
log

𝑛𝑖 𝑗 ∗ 𝑛
𝑣𝑖 ∗ 𝑢 𝑗

, E[MI(𝑋,𝑌 )] =
𝑟∑︁
𝑖=1

𝑠∑︁
𝑗=1

𝑣𝑖 ∗ 𝑢 𝑗

𝑛2 log
𝑣𝑖 ∗ 𝑢 𝑗

𝑛

and 𝐻 (𝑋) = −
𝑟∑︁
𝑖=1

𝑣𝑖

𝑛
log

( 𝑣𝑖
𝑛

)
, 𝐻 (𝑌 ) = −

𝑠∑︁
𝑗

𝑢 𝑗

𝑛
log

( 𝑢 𝑗

𝑛

)
V-Measure (VM). The V-Measure combines two other metrics, homogeneity and com-
pleteness, into a single value. Homogeneity measures how well each cluster contains only
data points of a single class. Completeness measures how well all data points of a given
class are assigned to the same cluster. The V-Measure is the harmonic mean of homogeneity
and completeness. It is defined as follows:

𝑉 = 2 ∗ 𝐻 ∗ 𝐶
𝐻 + 𝐶

with 𝐻 = 1 −
∑𝑟

𝑖=1
∑𝑠

𝑗=1
𝑛𝑖 𝑗

𝑛
log 𝑛𝑖 𝑗

𝑣𝑖∑𝑟
𝑖=1

𝑣𝑖
𝑛

log 𝑣𝑖
𝑛

, 𝐶 = 1 −
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3.4 Final Ranking

Our final goal is to compare different relationship measures by their performance on different
test datasets. As one metric alone does not capture every piece of information, we collected
the most common ones from information retrieval and clustering in the previous chapter. We
are not interested in the absolute performance of each relationship measure but in how they
compare. Therefore, we do not evaluate absolute values but rank each relationship measure
on the corresponding metric. For each metric, the best relationship measure achieves rank
one, and rank 𝐿 is assigned to the worst measure for 𝐿 different relationship measures.
This makes the measures comparable over different datasets, which might vary in difficulty
and, therefore, absolute achievable performance. We then compute the mean rank on all
metrics and all datasets for the final ranking. When 𝑛 relationship measures perform equally
well, we apply average ranking, where the rank is the average of all 𝑛 measures, sorted
by their initial position in the input vector. With this, we want to mitigate the edge case,
where many relationship measures perform well, and one does not at all. In these cases,
the low-performing measure would receive rank two, conveying the impression that this
measure works well in comparison.



4 Evaluation

4.1 Available Datasets

For our evaluation, we gathered several datasets, each with different properties in terms of
contained measurements and functional groups (see tab. 4). We found two publicly available
building datasets containing measurements from different university buildings, Soda Hall
(soda) and Sutardja Dai Hall (keti) at UC Berkeley, containing data from approximately
one week. These datasets have been made public by Wu et al. [WYW23] and Hong et
al. [HGW17], for which we are very thankful. Each dataset contains temperature, carbon
dioxide, humidity, luminosity, and motion sensors (PIR) with meta-data stating the room
in which each sensor is located. Unlike Wu et al. [WYW23], we do not exclude the PIR
measurements from the dataset, even though changes in these sensors are exceptionally rare.
In addition to the public datasets, we enriched our collection with additional proprietary
datasets to achieve higher data diversity. One dataset contains the recorded time series of
14 wire-braiding machines, where the signals include rotation speed, rotation temperature,
and machine status. The functional groups for this dataset are the different machines. The
recorded data spans approximately three months. There is no known issue with missing
data or malfunctioning sensors. All machines work in different cycles on different products.
One cycle typically takes around three days to complete.
All of the previous datasets contain only a few time series per functional group. To provide
larger groups, we also use a large collection of time series recorded in different combined-
cycle gas power plants. These plants can be separated into blocks, where each block is a
small plant on its own. Each of these blocks contains two gas-powered turbines and a steam
turbine, which is powered by steam generated using hot exhaust gases. The measurements
span approximately four months. In contrast to the other dataset, each turbine contains 100
to 150 sensors, resulting in a size of over 100 time series per functional group and way fewer
different groups than the other datasets. The signals are diverse and include temperature,
pressure, electric, and flow measurements. Temperature and pressure are the most common
measurements [WL23]. We include data from four blocks (plant 1 − 4). Shutdowns and
start-ups are not regular; on average, there is one every two weeks.
The datasets contain different impurities. For the building datasets, we expect that seasonali-
ties heavily influence each time series due to diurnal and environmental influences, while
the changes due to human presence are minor. The precision of our industrial data sets is
limited due to dead-banding and irregular measurements. Additionally, one of the power
plant datasets contains periods of imputed and steady data where the SCADA system was
on hold for maintenance operations.

4.2 Preprocessing

It is not feasible to deploy sophisticated preprocessing routines to each dataset as the time
series are diverse and have no accompanying meta-data information. Consequentially, we



Tab. 4: Datasets Information.

Name Origin Signals Functional Group Duration Resampling

Rotary Braiding Machines 42 Machines (14) 1 month 5 min
Keti Building 255 Rooms (47) 1 week 1 min
Soda Building 394 Rooms (78) 1 week 1 min
Plant 1 Power Plant 407 Turbines (3) 2 month 10 min
Plant 2 Power Plant 408 Turbines (3) 2 month 10 min
Plant 3 Power Plant 407 Turbines (3) 2 month 10 min
Plant 4 Power Plant 408 Turbines (3) 2 month 10 min

keep the preprocessing steps to a minimum. We resample the time series using linear
interpolation so the samples are equidistant and synchronous for all time series within one
dataset. For each dataset, we choose a sampling rate that is appropriate to capture changes
and ensures that all time series from all datasets are roughly equal in length (see tab. 4).
With the resampling, each time series has a length of roughly 10,000 samples. We then
exclude signals that have a standard deviation of less than 1−10 as these signals are constant
over almost the complete duration. Intuitively, these time series do not contain enough
information to be affiliated with a functional group. Finally, the time series are z-score
normalized and de-trended, which is good practice and is required by most relationship
measures.

4.3 Implementation and Evaluation Details

Due to the number of different relationship measures, we restrict the overall computation
time to a feasible level. As the acquisition of pairwise relationships is inherently quadratic,
we define a time limit for each pair and multiply this limit by the number of signals squared
to reach the final time budget for each measure. This is in line with other comparative
papers, e.g., for time-series-anomaly detection [SWP22]. We set the time limit per pair to
250 ms. We distribute the computations over 64 cores using an AMD EPYC 7713 CPU and
512GB RAM. Computations took about four days, and computing all relationship measures
for each dataset took twelve hours on average.
Notably, some measures did not enter their main computational pipeline. They timed out
while acquiring hundreds of gigabytes of memory for internal arrays. With an internal
limitation on memory acquisition, the available memory was never exceeded. In addition
to our timing restrictions, we excluded similarity matrices containing undefined values
(NaN). Table 5 shows how many relationship measures terminated for the different datasets.
Measures that timed out or had memory issues stem mainly from the spectral category. Only
a few measures from other categories timed out. This is likely tied to the implementation of
the spectral measures, as most of them use the same underlying library. In conclusion, out
of the 216 different measures, only 68 terminated for all datasets. See fig. 2 for a listing of
successfully terminated relationship measures.



Tab. 5: Numbers of terminated and excluded relationship measures. Initially, the computation started
with 216 measures per dataset. Exclusion was due to time, memory, and NaN.

Dataset Initial Number Time limit Memory Issue Partial NaNs Finalized

Rotary 216 -43 0 -7 166
KETI 216 -13 -56 -66 81
Soda 216 -43 -61 -23 89
Plant 1 216 -13 -62 -68 73
Plant 2 216 -43 -62 -32 79
Plant 3 216 -45 -62 -32 77
Plant 4 216 -34 -62 -44 76

Terminated Relationship Measures: 68

Information theory: 12 Spectral: 0 Misc.: 19

Basic Statistics: 23

kendalltau: 2 xcorr: 2 prec: 8 spearmanr: 2 cov: 9

Distance Measures: 11

gwtau: 1 pdist: 6 bary: 4

Causal Inference: 3

reci: 1 igci: 1 cds: 1

ce: 1 xme: 1 gc: 1 mi: 3 te: 1 je: 1 tlmi: 3 si: 1 lmfit: 5 coint: 8 pec: 6

Fig. 2: Relationship measures that we included for analysis. Split by categories and specifiers.

4.4 Results

For brevity, we only show the results of the top-ranked relationship measures. We refer the
reader to the accompanying GitHub repository for the complete results [We24]. To make
our results comparable with the related work, note the following parallels:

Cov.: For z-scored signals, the off-diagonal elements of the covariance matrices are equal
to the PCC. Therefore, the results of the relationship measure cov are equal to using
the PCC as described in section 2.2.

Lmfit/Gc.: While not completely equal, lmfit and gc follow a similar idea as the related
work in section 2.2. These measures create linear models and use their predictive
power to indicate relationship strength.

Tab. 6 describes the value distribution of the relationship measure performances per dataset
and evaluation metric. For all metrics, higher values are better. Looking at the minimum and
maximum, we can see that the performances for the information retrieval metrics mostly
cover a large part of the value range for each metric. In other words, there are good and
bad relationship measures for each IR metric and dataset. The difference in MAP/TA and
MRR shows that on average, the nearest neighbour is often related (high MRR), but not
all neighbours are (MAP/TA not completely reaching their maximum).For the clustering



metrics, even the best performing best-performing relationship measures are relatively far
from the theoretical maximum value, indicating that clustering is the harder task. We can
also see that the methods show, on average, similar performance for all the power plant
datasets, while they perform very differently within the building datasets and the rotary
datasets. In conclusion, deriving functional relations is more challenging on the plant and
the Keti datasets than on rotary and soda.

Tab. 6: Absolute metric values for all datasets. Higher is better for all metrics. The statistics are
calculated over all relationship measures per evaluation metric and dataset. Using ∧: Minimum ,∅:
Mean, ∨: Maximum as symbols.

Metric Plant1 Plant2 Plant3 Plant4 Rotary Soda Keti

MRR
∧ 0.00 0.00 0.00 0.00 0.03 0.01 0.01
∅ 0.73 0.76 0.77 0.79 0.71 0.96 0.23
∨ 0.93 0.93 0.93 0.93 1.00 1.00 0.71

MAP
∧ 0.30 0.31 0.30 0.28 0.06 0.00 0.03
∅ 0.45 0.49 0.51 0.54 0.62 0.66 0.10
∨ 0.54 0.60 0.63 0.70 0.96 0.99 0.32

NDCG
∧ 0.68 0.68 0.68 0.68 0.23 0.12 0.22
∅ 0.81 0.83 0.83 0.85 0.74 0.72 0.33
∨ 0.87 0.88 0.89 0.91 1.00 1.00 0.57

TA
∧ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
∅ 0.54 0.58 0.59 0.61 0.70 0.83 0.53
∨ 0.64 0.69 0.74 0.78 0.87 1.00 0.72

ARI
∧ -0.01 -0.01 -0.01 -0.01 -0.03 -0.00 -0.01
∅ 0.04 0.14 0.19 0.19 0.52 0.46 0.02
∨ 0.37 0.36 0.42 0.43 1.00 0.98 0.12

AMI
∧ -0.00 -0.00 -0.00 -0.00 -0.07 -0.04 -0.04
∅ 0.05 0.16 0.19 0.21 0.59 0.62 0.07
∨ 0.29 0.35 0.37 0.42 1.00 0.98 0.27

VM
∧ 0.00 0.00 0.01 0.01 0.46 0.65 0.31
∅ 0.06 0.16 0.20 0.22 0.81 0.91 0.51
∨ 0.29 0.36 0.37 0.43 1.00 1.00 0.67

The ranks for each of the seven top-performing measures are shown in fig. 7. On the left
side, all metrics and datasets are used. On the right side, the datasets are grouped into
building and power plant datasets. The order of the legend elements corresponds to their
ranking (the top element has the highest ranking). Each horizontal line corresponds to
a different metric. The bold lines mark the mean rank averaged over all metrics for a
single dataset with its name on the right side of the plot. The perfect relationship measure
would be visualized as a vertical line on the rightmost side of the plot, ranking high
throughout all metrics and datasets. A line on the left side indicates bad performance. Due
to average ranking, the lines sometimes collectively dip to the left if there are a multi-
tude of well-performing measures. An example can be seen for the MRR in Fig. 7c (first line).

Instead of separating the ranking by datasets, we can also separate by metrics. In
fig. 7, we indicate this separation by using normal font style for the information-retrieval
metrics and italic style for the clustering metrics. More directly, this can be seen in fig.



3-5, where the best-performing measures are on the left, and their corresponding line indi-
cates their rank on a decreasing axis. See the section 5.1 for a detailed discussion of the results.

As mentioned in section 3.2, we also want to evaluate different measure combinations of
relationship measures. We selected the following measures based on their good performance
overall (fused-perf):
• Power Envelope Correlation (PEC) and Precision Matrix (squared) (Prec-sq) are the

best-performing measures for both the power plant and building datasets for both
clustering and IR metrics (fig. 7b and 7c).

• Time-lagged Mutual Information (TlMI) and Stochastic Interaction (SI) perform
second best for the IR metrics separated by dataset type (fig. 4a and 5a).

• Granger Causality (GC) and Conditional Entropy (CE) both perform well for clustering
metrics (fig. 4b and 5b).

In addition, we select the covariance matrix, the precision matrix, and the PEC as they can
be computed relatively fast and perform comparatively well (fused-speed). All of the three
measures only take seconds for the largest dataset containing 407 signals. The results in fig.
6 show that combining measures improves the ranks over using singular measures.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

6.7pec
9.5tlmi
9.5ce 9.5 mi

9.5 lmfit
13.3 prec-sq

(a) Information Retrieval Metrics.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

10.4pec
14.4gc
18.7ce 20.0 pdist

22.0 je
22.5 coint

(b) Clustering Metrics.

Fig. 3: Mean ranks for different metric sets averaged over all datasets.
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(a) Information Retrieval Metrics.
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3.6pec
5.8gc

14.3bary-sq 19.8 lmfit
20.1 coint
22.3 reci

(b) Clustering Metrics.

Fig. 4: Mean ranks for different metric sets averaged over all power plant datasets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5.7prec-sq
9.2si

13.8tlmi 15.1 lmfit
15.9 mi
15.9 ce

(a) Information Retrieval Metrics.
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(b) Clustering Metrics.

Fig. 5: Mean ranks for different metric sets averaged over all building datasets.
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7.5fused-perf-add
7.9fused-perf-median
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Fig. 6: Mean ranks with different combination methods and selections of fused measures averaged
over all datasets and all metrics.
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(c) Building Datasets.

Fig. 7: Resulting ranks over different metrics and different datasets for the top seven relationship
measures. The legends are sorted by average ranking over all metrics and datasets. The top-ranking
measure is listed first. The evaluation metrics for clustering and IR are separated by font.



5 Discussion

5.1 Discussion of Results

Overall, PEC is the best-performing relationship measure (fig. 7a). This is surprising as the
power envelope smoothes the signal, eliminating high-frequency variations. This seems
contradictory to the ideas in section 2.2, where it is stated that events are of higher frequency
than the normal variations. Comparing figure 7a and the results for different datasets in
figures 7b and 7c, it becomes evident that PEC mainly performs well on the power-plant
datasets. While it still is seventh place for the building datasets, several other measures are
outranking it.
We attribute this to the selectivity and prominence of events in the different datasets.
When taking the perspective of the related work from section 2.2, events pertaining to a
single functional subgroup (high selectivity) help to identify related signals if they clearly
affect all the signals (high prominence). Events influencing all signals equally can be
seen as confounding variables. In the power plant context, the main events are shutdowns
and start-ups. The turbines are turned down individually, with delays occurring between
the shutdowns. With this, the shutdowns have a high selectivity and high prominence
as they cause clearly measurable changes in all affected components. For the building
data, the presence of a person (high selectivity) in a room most likely only influences the
measurements minimally (low prominence). In contrast, day and night cycles most likely
heavily influence the sensors (high prominence). For example, sunlight and office hours
influence all building rooms equally (low selectivity).

CE is the second best relationship measure (fig. 7a). The lower the CE for one time series is,
the less chaotic its values are for a fixed value of the other time series. A low CE indicates
that given the other signals’ value, only a few values are possible for the current signal. This
ranking is somewhat stable comparing the different dataset types, with it taking second
place for the power plant datasets (fig. 7b) and third place for the building datasets (fig. 7c).
CE is linked to Joint Entropy (JE) and Mutual Information (MI) by additive and subtractive
relationships. It is, therefore, not surprising that these measures also rank relatively high.

Regression-based measures (gc and lmfit) also perform well overall, which is in
line with the related work (see section 2.2). While they are among the top-performing
measures for the power-plant datasets, they are not performing similarly well for the building
datasets. We assume this can be attributed to a similar reason as discussed for PEC. With
highly prominent and low selectivity day and night cycles, regression models will perform
well even for unrelated pairs of time series. As the error of the regression models is averaged
over a long period, the highly selective events, such as the presence of persons in individual
rooms, do not influence the result as much.

In contrast to the power-plant datasets, the precision matrix performs exceptionally
well for the building datasets. This is again strongly linked with the argument of confounding



events (high prominence, low selectivity). The off-diagonal elements of the precision
matrix are related to the partial correlation of the two elements. By inverting the covariance
matrix, the effect of confounding variables is reduced. While the day and night cycle as a
confounder is not measured directly, we assume its significant representation in all of the
time series is enough to reduce the spurious correlations.

It is important to note that the covariance matrix, and with that, the PCC, is not
the best-performing relationship measure. It is the eighth best-performing measure but is sur-
passed by information-theoretic measures in all our comparisons. This is in line with results
from causal discovery [Ru19]. Again, we argue that spurious correlations, introduced by the
day and night cycles, decrease the performance of the covariance matrix. The covariance per-
forming better for the power plant dataset than on the building datasets supports the argument.

Another observation is the difference in top-ranked measures for the IR and cluster-
ing metrics visible in figs. 3-5, when comparing the left and right plots of each figure. Only
the top-ranked measure is the same on both sides, while the other measures change. The
difference is most likely rooted in the different perspectives. The IR metrics only evaluate
the relatedness of the items to be retrieved. In contrast, the clustering metrics assess the
complete structure of the inferred time-series graph. With that, not only is the closeness of
related signals important, but so is the separation from unrelated signals.

Unsurprisingly, the fused measures rank significantly higher than singular measures,
showing a promising prospect for combining multiple relationship measures (fig. 6).
Even using only the fastest and most accurate measures yields significant advantages
(fused-speed). Except for SNF, there is almost no difference when combining the measures
using summation, PCA or median. SNF did not perform well enough to be part of the
presented figures. Although our results indicate that the combination of metrics can yield
significant improvements, the initial ideas presented here leave room for further exploration.
This includes other ways of fusing the measures and if there is an optimal number or if the
quality only improves when fusing a growing number of measures. Unfortunately, this is
out of the scope of this paper and requires dedicated analysis. We consider this future work.

5.2 Limitations and Future Work

Our results show that the performance of different relationship measures depends on the
dataset and the prominence of the events that imply a relationship between two time series.
A broader collection of data incorporating even more time series and relations would
further stabilize these results. We are aware of this problem, but obtaining public data for
evaluations is rare [St22]. We contacted the authors of several studies but could not obtain
more public data. Still, we compare different relationship measures using diverse data and
different evaluation perspectives. In the related work, often only one measure is evaluated
on a singular dataset without comparison to an appropriate baseline.



Another limitation is the usage of default parameters for all relationship measures. Similar to
other algorithms, some measures allow for parameter tuning. As the relationship measures
stem from various domains and have not been explicitly developed for heterogeneous
time-series data integration, the default hyper-parameters might not fit our application.
Still, our insights are valuable since the setting is similar to the practical use case. When
working with large time-series datasets, meta-data inference is often only the initial step in
the pipeline up to an ultimate goal, and the available information on the data is sometimes
minimal. In this situation, practitioners will likely not utilize significant computational
resources for extended hyperparameter optimization. Additionally, we omit the discussion
of runtime as it most likely heavily depends on the respective implementation of each
relationship measure, which we did not optimize. Nevertheless, we kept track of the runtimes
and provide the measurements in our repository [We24].
While measurements on real-world datasets are desirable to measure practical feasibility,
simulated data could improve the analysis of relationship measures. In our case, the data
includes different overlapping quality issues, like missing data, noisy signals, and noisy
labels. Therefore, separating cause-effect relations of different impurities on the measures is
difficult. Additionally, the functional subgroups are not guaranteed to be separable based
only on the raw signals. For example, ground truth meta-data could indicate that two
signals are from different rooms, while in reality, these rooms are not separated by a wall.
Hence, their measurements are likely linked. A targeted analysis of singular impurities in a
simulation environment could help extract further insights.

6 Conclusion

This paper analyzes the performance of various relationship measures from diverse domains
to infer relationships between heterogeneous time series. It evaluates them from different
perspectives using seven information retrieval and clustering metrics. This analysis serves
dual purposes. Practically, it offers a valuable reference for selecting an appropriate
relationship measure when a quick and informed decision is needed without prior knowledge.
Additionally, our analysis provides a reference for selecting a baseline when evaluating
novel ideas for relationship inference in heterogeneous time series collections.
No single measure clearly outperforms all competitors. Nevertheless, the results show that
while the Pearson Correlation Coefficient is the de-facto gold standard relationship measure,
information-theoretic measures, namely conditional entropy or mutual information, are
more likely to capture the important relationships in the absence of any prior knowledge.
With prominent and selective events, power-envelope correlation performs well, while the
precision matrix is most likely to perform well in the case of confounding, low selectivity, and
high prominence events such as day and night cycles influencing all signals. Furthermore,
combining different measures will most likely improve the relationship inference. For
example, simply summing the power-envelope correlation, correlation matrix, and precision
matrix captures different relational aspects with only little computational overhead.
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