ReProVide: Query Optimisation and Near-Data Processing
on Reconfigurable SoCs for Big Data Analysis >

Demo Paper

Tobias Hahn ®!, Maximilian Langohr 1 Stefan MeiBner ®!, Benedikt Doring 1
Stefan Wildermann ®!, Klaus Meyer-Wegener ®!, and Jiirgen Teich ®!

)

Abstract:

The goal of ReProVide is to provide novel hardware and optimisation techniques for scalable,
high-performance processing of Big Data. The Programmable System-on-Chip (PSoC) architecture
of ReProVide includes a reconfigurable FPGA for the support of hardware accelerators for various
operators on relational and streaming data. Such PSoCs can be used to process data directly at the
source, such as data from attached NVMes, using application-specific accelerators. For example,
compute-intensive tasks such as JSON parsing can be offloaded to the hardware accelerators, reducing
CPU load. In addition, reducing the volume of data at an early stage avoids unnecessary data
movements, resulting in lower energy consumption. This demo illustrates the opportunities and
benefits of hardware-reconfigurable, FPGA-based PSoCs for near-data processing. The demo allows
users to run two queries and select which operations should be pushed onto the SoC for near-data
hardware acceleration. From no acceleration to maximum acceleration, a 52X improvement in
throughput and 67X lower energy consumption can be observed.

Keywords: Demo, Near-Data Processing, FPGA, Stream Processing

1 Introduction

The exponential growth in the volume, velocity, and variety of data stored on servers around
the world presents significant challenges. Efficiently analyzing petabytes of data within a
reasonable amount of time and energy budget requires large-scale parallel data processing
at the source. As a remedy, current research proposes new hardware architectures to reduce
data volume early in the processing chain. To take advantage of these novel systems, new
query analysis and optimisation techniques are needed.

! Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU), Erlangen, Germany,

tobias.hahn @fau.de, ® https://orcid.org/0009-0005-4513-0161;

maximilian.langohr @fau.de, © https://orcid.org/0000-0002-2520-7134;

stefan.meissner @fau.de, ® https://orcid.org/0009-0002-8722-1457,

benedikt.lw.doering @fau.de, © https://orcid.org/0009-0008-0406-7700;

stefan.wildermann @fau.de, ® https://orcid.org/0000-0002-4324-2187,

klaus.meyer- wegener @fau.de, ® https://orcid.org/0000-0002-8102-1019;

juergen.teich@fau.de, © https://orcid.org/0000-0001-6285-5862

This work has been supported by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG)
as part of the Priority Programme SPP 2037 under project ReProVide (project number 361498444).

https://orcid.org/0009-0005-4513-0161
https://orcid.org/0000-0002-2520-7134
https://orcid.org/0009-0002-8722-1457
https://orcid.org/0009-0008-0406-7700
https://orcid.org/0000-0002-4324-2187
https://orcid.org/0000-0002-8102-1019
https://orcid.org/0000-0001-6285-5862
mailto:tobias.hahn@fau.de
https://orcid.org/0009-0005-4513-0161
https://orcid.org/0009-0005-4513-0161
mailto:maximilian.langohr@fau.de
https://orcid.org/0000-0002-2520-7134
https://orcid.org/0000-0002-2520-7134
mailto:stefan.meissner@fau.de
https://orcid.org/0009-0002-8722-1457
https://orcid.org/0009-0002-8722-1457
mailto:benedikt.lw.doering@fau.de
https://orcid.org/0009-0008-0406-7700
https://orcid.org/0009-0008-0406-7700
mailto:stefan.wildermann@fau.de
https://orcid.org/0000-0002-4324-2187
https://orcid.org/0000-0002-4324-2187
mailto:klaus.meyer-wegener@fau.de
https://orcid.org/0000-0002-8102-1019
https://orcid.org/0000-0002-8102-1019
mailto:juergen.teich@fau.de
https://orcid.org/0000-0001-6285-5862
https://orcid.org/0000-0001-6285-5862

multiple queries
Query T
H tuples
cution
Plan .
window .
. host partition
group by airport

energy consumption

eyep
ssoadur

origin_country = "France” s
u “ i - ident, longitude, latitude
@ (squawk=7600 OR @

squawk=7700) AND type LIKE large_airport”

on_ground=FALSE
T |id, longitude, latitude ;
» ‘ongitude, % clevation < 1,000
squawk, on_ground,
parse origin_country scan

I RPU 1 partition I
flight .
data airports

switch Si

ReProVide
: cluster
ingress

ﬁlght data RPU 2 partition

Fig. 1: Overview of a ReProVide cluster (left) where multiple RPUs are connected to a host, which
schedules multiple applications (as shown by example right) on the cluster. RPUs can process relational
data originating from local storage devices as well as ingress streaming data from external sources.

ReProVide (Reconfigurable Data Provider), as depicted in Fig. 1, proposes and explores
FPGA-based solutions for intelligent storage and near-data processing, coupled with new
query optimisation methods. Our approach exploits the speed and flexibility of FPGA
technology to provide scalable, efficient pre-filtering of Big Data.

The ReProVide demo features a cluster of FPGA-based Programmable System-on-Chip
(PSoC) architectures called Reconfigurable Data-Provider Units (RPUs) (see Fig. 2a).
RPUs can function as storage-attached devices, interfacing directly with two NVMe SSDs,
as well as network-attached devices, processing incoming streaming data from a 10Gbit
Ethernet interface. For processing and filtering, RPUs take advantage of the dynamic,
run-time reconfigurability of modern FPGAs to load pre-designed hardware accelerators
on demand. ReProVide enables hardware-based processing of user-defined queries. The
query-specific filtering performed by RPUs significantly reduces the vast amount of data at
the source, thereby minimising one of the primary drivers of energy consumption in data
center networks: data movement [Bo18].

To integrate RPUs into a Database Management System (DBMS) and take full advantage of
their capabilities, we use novel optimisation techniques to optimise for multiple objectives
(e.g., latency, throughput). These techniques determine which operations are best suited for
execution on RPUs (see Fig. 1, right), utilising cost models that account for the performance
and characteristics of RPUs. Additionally, the optimiser decides how to deploy and execute
the assigned sub-queries or database operators on hardware accelerators, which are mapped
to RPUs via hardware reconfiguration.

(a) ReProVide cluster (b) Interactive demo dashboard

Fig. 2: In the ReProVide demo, two queries using different RPU accelerators can be executed live on
the ReProVide cluster (a). The query results and statistics can be viewed directly on the dashboard (b).

2 Related Work

FPGAs are emerging as a promising architecture for many Big Data applications. This is
due to their ability to implement parallel, deeply pipelined hardware accelerators that are
perfectly tailored to specific operations. In addition, FPGAs support run-time reconfiguration,
allowing hardware accelerators to be dynamically swapped out to adapt to changing queries.
FPGA s can be attached directly to CPUs as co-processors, as proposed in [CO14; KT11;
Mal9; Wal6; Zil6]. The CPU is responsible for transferring the data to the local memory
of the FPGA, which can then process this input [Fa20]. This results in a lot of additional
data movement, making this approach less energy efficient [Bo18].

In shared memory systems, such as those proposed in [Mo23; Sil7a; Sil7b; St15], the
CPU and FPGA can both access the same main memory [Fa20]. While this helps to avoid
additional memory transfers, the CPU and FPGA share not only the same memory but
also the memory bus. The bandwidth required by the accelerator can therefore limit the
processing speed of the CPU. Near-data processing systems such as [Bel5; Be22; MTA10;
TWN13; WIA14] differ significantly. Here, the FPGA is placed between the data source
and the CPU. Even then it might not be possible to fully process a query on the FPGA, but
it can significantly accelerate certain tasks such as filtering data. ReProVide follows the
near-data processing design principle.

3 Demonstration Setup

The ReProVide demo shows a ReProVide cluster consisting of 2 RPUs (see Fig. 2a) and an
Intel(R) Core(TM) 19-13900K host computer. The demo also includes a monitor connected

to the host that displays the ReProVide dashboard (see Fig. 2b). The dashboard can be used
to launch and monitor queries live on the cluster. The RPUs and the host are connected via
a 10 GBit network. In addition, a 1 GBit network is used, through which the host is able to
control and reconfigure the RPUs.

Xilinx Zynq ZCU106 PSoCs are used for our RPUs. These consist of a programmable logic
and a processing system, which includes a quad-core ARM® Cortex®-AS53 applications
processor. The programmable logic is divided into a static region and four reconfigurable
regions. Depending on the application, the associated accelerators are dynamically loaded
onto these reconfigurable regions. The static region contains DMA engines, IP cores for
NVMe and Ethernet interfacing, and interconnection logic. All data is moved between
accelerators and interfaces using DMAs, managed by the ARM CPU.

4 Walkthrough

The ReProVide demo shows the execution of two selected queries from the SKYSHARK
benchmark [LVM23], which was specially developed for testing and evaluating hardware-
accelerated database systems. The SKYSHARK benchmark demonstrates various flight
monitoring analysis applications using real flight tracking data collected by OpenSky
Network. The following two queries were selected from the benchmark for the ReProVide
demo:

1 SELECT id,icao24,callsign,longitude,latitude,baro_altitude
2 FROM states
3 WHERE squawk = 1000 OR squawk = 7120 OR squawk = 7637

Query 1: Searches for flight data tuples with specific transponder codes (squawk).

1 SELECT id,icao24,callsign,longitude,latitude,baro_altitude

2 FROM states

3 WHERE baro_altitude > 10668.0 AND

4 (vertical_rate < -0.33 OR

5 ((squawk = 8600 OR squawk = 1000) AND vertical_rate < 10.15))

Query 2: Searches for flight data tuples with a more complex filtering condition based on altitude,
vertical velocity, and transponder code.

The QEPs of both queries are a sequence of parse, selection o, and projection 7 operators,
and consequently follow the form as also depicted in Fig. 3 (left). The ReProVide optimiser
creates various execution plans for each query and then selects the plan that best meets the
given requirements regarding response time, throughput, and energy consumption. A cost
model specifically designed for such FPGA-accelerated systems is used to quickly evaluate
and compare different plans. In this demo, however, we want to run several of the possible
execution plans one after the other in order to observe their effect in the optimisation

objectives. Different plans execute different shares of operators either on the RPU or on the
host, as indicated in Fig. 3 Plans A to D.

application/ application/ application/ application/

user user user user
host

host

application/ host

user host

[+
L 4

i8-8
&
3|8
: o8
U @

RPU
parse |HEIELS parse| RPU parse
RPU
source. RPU source
Logical QEP Plan A Plan B Plan C

Fig. 3: Example of a logical query execution plan (left) and four possible execution plans for partitioning
operators (parsing, selection o, projection) between RPU and host.

To execute operators on the RPU, a variety of accelerator cores were developed for ReProVide,
focusing on the processing of semi-structured data such as JSON [Ha22; Ha23; Ha24;
HWT22; HWT23; HWT24]. These accelerators are perfectly suited for the SKYSHARK
benchmark, which also relies on JSON-encoded input data. When the optimiser selects
an execution plan, an accelerator is automatically generated and synthesized for all RPU
operations in the given plan. Unfortunately, the generation of accelerators at runtime cannot
be shown, as this would consume too much time. However, for a Big Data application
that runs for hours or even weeks, 10 minutes to synthesize a custom accelerator may be
considered reasonable..

In the demo, the four different plans from Fig. 3 are executed one after the other for each
of the two queries. For execution plans B, C, and D, the corresponding accelerators were
synthesized in advance. No accelerator is required for plan A, as the loaded data on the RPU
is transmitted unprocessed. At the start of a demo run (i.e., execution of a query plan), the
required accelerator is loaded into a free reconfigurable area on the FPGA using dynamic
partial reconfiguration for plans B, C and D. For plan B, the accelerator will parse the
incoming JSON data into a C-struct format. In plan C, the accelerator will additionally
apply the select operator to filter out unwanted records. Finally, in Plan D, the accelerator
also applies the projection operator, reducing the number of attributes and, hence, the total
amount of data passed to the host.

After reconfiguration, a 4 GB JSON file is read from an NVMe SSD. The read data is
transferred to the accelerator via DMAs, where data is continuously processed. The result
data of the accelerator is again moved via DMAs to the 10 GBit interface for further
transmission to the host. For execution plan A, the data is transferred directly from the
NVMe to the Ethernet interface. The remaining processing steps are then performed on

the host (see Fig. 3). Finally, the query result tuples are plotted live on the dashboard and
latency and throughput statistics are displayed.

5 Evaluation

When running the demo, the results of each execution plan run are displayed on the
dashboard. The evaluation results of a full demo execution are shown in Tab. 1 (not all the
information shown is logged in the live demo).

Tab. 1: Evaluation results from the demo execution.

execution response throughput avg. power [W] total’ energy
time [s] time [s] (KT/s] RPU host total” [kJ]
A 400.0 1.17 2954 26 114 162 64.66
Ql B 12.8 3.25 91944 26 74 122 1.57
C 9.3 3.29 126979 26 70 119 1.11
D 8.7 3.17 136153 26 66 114 0.99
A 400.2 1.14 891 26 114 162 64.67
Q2 B 13.5 3.19 28702 26 76 124 1.68
C 8.9 3.18 43535 26 66 115 1.02
D 8.3 3.14 46626 26 67 115 0.96

T total power/energy includes RPU, host and switch.

The energy measurements were taken using a socket power meter and therefore cover the
entire system, including the power supply. It can be observed that the more operators are
accelerated on the RPU, the more the throughput increases and the energy consumption
decreases. The biggest improvement can be observed between Plan A and Plan B, stemming
from the acceleration of compute-intensive JSON parsing. The high CPU utilisation of the
host is also reflected in its power consumption. For plan C and D, the CPU utilisation and
thus the CPU power consumption is only slightly reduced. However, by reducing the data
movements, an additional significant improvement in execution time (i.e., start to last tuple),
throughput and energy consumption can be achieved.

The response time (i.e., start to first tuple) shows an increase of about 2 seconds from plan
A to the other plans. This increase is due to the additional time required to reconfigure the
FPGA with the new accelerator when starting the query.

6 Conclusion

The presented demo elucidates that FPGAs are beneficial for processing data close to the
source in Big Data applications. As a result, the CPU is relieved and unnecessary data
movements are prevented, positively impacting throughput as well as energy consumption.
The freed CPU cycles can then be used to scale across multiple RPUs in order to serve
multiple tenants.

References

[Bels]

[Be22]

[Bo18]

[CO14]

[Fa20]

[Ha22]

[Ha23]

[Ha24]

[HWT22]

[HWT23]

Becher, A.; Ziener, D.; Meyer-Wegener, K.; Teich, J.: A co-design approach for accelerated
SQL query processing via FPGA-based data filtering. Pp. 192-195, 2015, po1: 10.1109/
FPT.2015.7393148, urL: https://doi.org/10.1109/FPT.2015.7393148.

Becher, A.: Near-Data Query Processing on Heterogeneous FPGA-based Systems, PhD
thesis, Friedrich-Alexander-Universitidt Erlangen-Niirnberg, 2022, urL: https://nbn-
resolving.org/urn:nbn:de:bvb:29-opus4-189289.

Boroumand, A.; Ghose, S.; Kim, Y.; Ausavarungnirun, R.; Shiu, E.; Thakur, R.; Kim, D.;
Kuusela, A.; Knies, A.; Ranganathan, P.; Mutlu, O.: Google Workloads for Consumer
Devices: Mitigating Data Movement Bottlenecks. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018. ACM,
pp. 316-331, 2018, por: 10.1145/3173162.3173177, urL: https://doi.org/10.1145/
3173162.3173177.

Casper, J.; Olukotun, K.: Hardware acceleration of database operations. In: The 2014
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’14, Monterey, CA, USA - February 26 - 28, 2014. ACM, pp. 151-160, 2014, UrL:
https://doi.org/10.1145/2554688.2554787.

Fang, J.; Mulder, Y.T.B.; Hidders, J.; Lee, J.; Hofstee, H. P.: In-memory database
acceleration on FPGAs: a survey. VLDB J. 29 (1), pp. 33-59, 2020, po1: 10.1007/S00778-
019-00581-W, urL: https://doi.org/10.1007/s00778-019-00581-w.

Hahn, T.; Becher, A.; Wildermann, S.; Teich, J.: Raw Filtering of JSON Data on FPGAs.
In (Bolchini, C.; Verbauwhede, I.; Vatajelu, 1., eds.): 2022 Design, Automation & Test
in Europe Conference & Exhibition, DATE 2022, Antwerp, Belgium, March 14-23,
2022. IEEE, pp. 250-255, 2022, por: 10.23919/DATES54114.2022.9774696, URL:
https://doi.org/10.23919/DATES4114.2022.9774696.

Hahn, T.; Schiill, D.; Wildermann, S.; Teich, J.: An FPGA Avro Parser Generator for
Accelerated Data Stream Processing. In (Konig-Ries, B.; Scherzinger, S.; Lehner, W.;
Vossen, G., eds.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2023),
20. Fachtagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme"(DBIS),
06.-10, Mirz 2023, Dresden, Germany, Proceedings. Vol. P-331. LNI, Gesellschaft
fiir Informatik e.V., pp. 729-749, 2023, po1: 10.18420/BTW2023-46, urL: https:
//doi.org/10.18420/BTW2023-46.

Hahn, T.; Schiill, D.; Wildermann, S.; Teich, J.: ABACUS: ASIP-Based Avro Schema-
Customizable Parser Acceleration on FPGAs. In: 27th International Symposium on
Design & Diagnostics of Electronic Circuits & Systems, DDECS 2024, Kielce, Poland,
April 3-5, 2024. IEEE, pp. 79-85, 2024, por: 10.1109/DDECS60919.2024.10508904,
URrL: https://doi.org/10.1109/DDECS60919.2024.10508904.

Hahn, T.; Wildermann, S.; Teich, J.: Auto-Tuning of Raw Filters for FPGAs. In: 32nd
International Conference on Field-Programmable Logic and Applications, FPL 2022,
Belfast, United Kingdom, August 29 - Sept. 2, 2022. IEEE, pp. 167-175, 2022, por:
10.1109/FPL57034.2022.00036, urL: https://doi.org/10.1109/FPL57034.2022.00036.

Hahn, T.; Wildermann, S.; Teich, J.: SPEAR-JSON: Selective Parsing of JSON to
Enable Accelerated Stream Processing on FPGAs. In (Mentens, N.; Sousa, L.; Tran-
coso, P.; Papadopoulou, N.; Sourdis, I., eds.): 33rd International Conference on Field-
Programmable Logic and Applications, FPL 2023, Gothenburg, Sweden, September
4-8, 2023. IEEE, pp. 189-196, 2023, por: 10.1109/FPL60245.2023.00034, URL:
https://doi.org/10.1109/FPL60245.2023.00034.

https://doi.org/10.1109/FPT.2015.7393148
https://doi.org/10.1109/FPT.2015.7393148
https://doi.org/10.1109/FPT.2015.7393148
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-189289
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-189289
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1007/S00778-019-00581-W
https://doi.org/10.1007/S00778-019-00581-W
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.23919/DATE54114.2022.9774696
https://doi.org/10.23919/DATE54114.2022.9774696
https://doi.org/10.18420/BTW2023-46
https://doi.org/10.18420/BTW2023-46
https://doi.org/10.18420/BTW2023-46
https://doi.org/10.1109/DDECS60919.2024.10508904
https://doi.org/10.1109/DDECS60919.2024.10508904
https://doi.org/10.1109/FPL57034.2022.00036
https://doi.org/10.1109/FPL57034.2022.00036
https://doi.org/10.1109/FPL60245.2023.00034
https://doi.org/10.1109/FPL60245.2023.00034

[HWT24]

[KT11]

[LVM23]

[Mal9]

[Mo23]

[MTA10]

[Sil7a]

[Si17b]

[St15]

[TWN13]

[Wal6]

[WIA14]

(Zi16]

Hahn, T.; Wildermann, S.; Teich, J.: JSON-CooP: A JSON Decompression/Parsing
Co-Design for FPGAs. In: IEEE Proceedings of the 34th International Conference on
Field-Programmable Logic and Applications, Turin. 2024, por: 10.1109/FPL64840.
2024.00012.

Koch, D.; Torresen, J.: FPGASort: a high performance sorting architecture exploiting
run-time reconfiguration on FPGAs for large problem sorting. In: Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA
’11, Association for Computing Machinery, Monterey, CA, USA, pp. 45-54, 2011, 1sBN:
9781450305549, urL: https://doi.org/10.1145/1950413.1950427.

Langohr, M. S.; Vogler, T.; Meyer-Wegener, K.: SKYSHARK: A Benchmark with Real-
world Data for Line-rate Stream Processing with FPGAs. CEUR Workshop Proceedings
3630, pp. 98-109, 2023, urL: https://ceur-ws.org/Vol-3630/LWDA2023-paper9.pdf.

Maneyv, K.; Vaishnav, A.; Kritikakis, C.; Koch, D.: Scalable Filtering Modules for
Database Acceleration on FPGAs. In: 10th Int. Symp. on Highly-Efficient Accelerators
and Reconfigurable Technologies, HEART 2019, Nagasaki, Japan, June 6-7, 2019. ACM,
4:1-4:6, 2019, urL: https://doi.org/10.1145/3337801.3337810.

Moghaddamfar, M.: Database System Acceleration on FPGAs, PhD thesis, Technische
Universitit Dresden, 2023, UrL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-
856076.

Miiller, R.; Teubner, J.; Alonso, G.: Glacier: a query-to-hardware compiler. In: SIGMOD.
ACM, pp. 1159-1162, 2010, urL: https://doi.org/10.1145/1807167.1807307.

Sidler, D.; Istvan, Z.; Owaida, M.; Alonso, G.: Accelerating Pattern Matching Queries
in Hybrid CPU-FPGA Architectures. In: SIGMOD. ACM, pp. 403-415, 2017, URL:
https://doi.org/10.1145/3035918.3035954.

Sidler, D.; Owaida, M.; Istvdn, Z.; Kara, K.; Alonso, G.: doppioDB: A hardware
accelerated database. In: 27th Int. Conf. on Field Programmable Logic and Applications,
FPL 2017, Ghent, Belgium, Sept. 4-8. IEEE, p. 1, 2017, urc: https://doi.org/10.23919/
FPL.2017.8056864.

Stuecheli, J.; Blaner, B.; Johns, C.R.; Siegel, M.S.: CAPI: a coherent accelerator
processor interface. IBM J. Res. Dev. 59 (1), 7:1-7:7, 2015, 1ssn: 0018-8646, URL:
https://doi.org/10.1147/JRD.2014.2380198.

Teubner, J.; Woods, L.; Nie, C.: XLynx—An FPGA-based XML filter for hybrid
XQuery processing. ACM Trans. Database Syst. 38 (4), 2013, 1ssN: 0362-5915, UrL:
https://doi.org/10.1145/2536800.

Wang, Z.; Paul, J.; Cheah, H.Y.; He, B.; Zhang, W.: Relational query processing
on OpenCL-based FPGAs. In: 26th Int. Conf. on Field Programmable Logic and
Applications, FPL, Lausanne, Switzerland, Aug. 29 - Sept. 2. IEEE, pp. 1-10, 2016, urL:
https://doi.org/10.1109/FPL.2016.7577329.

Woods, L.; Istvdn, Z.; Alonso, G.: Ibex: an intelligent storage engine with support for
advanced SQL offloading. PVLDB 7 (11), pp. 963-974, 2014, 1ssN: 2150-8097, urL:
https://doi.org/10.14778/2732967.2732972.

Ziener, D.; Bauer, F.; Becher, A.; Dennl, C.; Meyer-Wegener, K.; Schiirfeld, U.; Teich, J.;
Vogt, J.; Weber, H.: FPGA-Based Dynamically Reconfigurable SQL Query Processing.
ACM Trans. Reconfigurable Technol. Syst. 9 (4), 25:1-25:24, 2016, por: 10.1145/
2845087, urL: https://doi.org/10.1145/2845087.

https://doi.org/10.1109/FPL64840.2024.00012
https://doi.org/10.1109/FPL64840.2024.00012
https://doi.org/10.1145/1950413.1950427
https://ceur-ws.org/Vol-3630/LWDA2023-paper9.pdf
https://doi.org/10.1145/3337801.3337810
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-856076
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-856076
https://doi.org/10.1145/1807167.1807307
https://doi.org/10.1145/3035918.3035954
https://doi.org/10.23919/FPL.2017.8056864
https://doi.org/10.23919/FPL.2017.8056864
https://doi.org/10.1147/JRD.2014.2380198
https://doi.org/10.1145/2536800
https://doi.org/10.1109/FPL.2016.7577329
https://doi.org/10.14778/2732967.2732972
https://doi.org/10.1145/2845087
https://doi.org/10.1145/2845087
https://doi.org/10.1145/2845087

